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ABSTRACT 

Complex coacervation is an encapsulation technique used to preserve the bio functionality 
of essential oils as well as provide controlled release. In this present work, encapsulation of 
Citrus Hystrix essential oil (CHEO) was formed by a complex coacervation technique with 
Gelatin-B (Gel B) and Chitosan (Chi) as the capping materials. The suitable encapsulation 
formulation was investigated as a function of pH and wall ratio using Zeta Potential 
analysis. Turbidity measurement and coacervate yield were carried out to confirm the 
suitable condition. Total Phenolic Content (TPC) was used to obtain the encapsulation 
efficiency (EE%) of the process. Results show that the suitable condition for coacervate 

formation between Gel B and Chi ratio of 
5:1 was at pH 5.8, which produced a high 
encapsulation efficiency of 94.81% ± 2.60. 
FTIR analysis validates the formation of 
coacervate as well as the encapsulated 
CHEO. The encapsulates obtained were 
spherical and dominated by 194.557 um 
particles. The CHEO was successfully 
encapsulated by a complex coacervation 
method.

Keywords: Chitosan, coacervation, encapsulation 
efficiency, essential oils, gelatin, microencapsulation 
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INTRODUCTION 

Citrus Hystrix essential oil (CHEO) has been extensively studied for its beneficial attributes 
as an antimicrobial (e.g., Sreepian et al., 2019; Srifuengfung et al., 2020) and antioxidant 
(Venkatachalam, 2019; Wijaya et al., 2017). However, like many other essential oils, 
its potential application is often limited by its high susceptibility to harsh and extreme 
environmental conditions (Adamiec et al., 2012). Therefore, encapsulation is a promising 
technique introduced to improve the stability of essential oils as well as provide controlled 
release. Encapsulation is a process where essential oils are polymeric coated within a 
capsule. Adamiec et al. (2012) previously encapsulated CHEO using konjac glucomannan 
and gum Arabic and reported the efficacy of the encapsulated CHEO in acting as an 
antibacterial comparable to the standard antibiotics. 

Though many techniques could be employed to encapsulate, complex coacervation 
has been amongst the oldest and most widely used techniques to encapsulate as it offers 
advantages such as cost saving, simple processes and allows for industrial scalability 
with very high payloads up to 99% (Bakry et al., 2016; Timilsena et al., 2019). The 
complex coacervation technique makes use of the principle of separating a colloidal 
system into two phases: (1) the polymer-rich dense phase (coacervate) and (2) the poor 
polymer continuous phase (coacervation medium) (Yan & Zhang, 2014). Coacervation 
formation is induced by the interaction of two oppositely charged polymers, usually 
using a combination of protein and polysaccharides (Lakkis, 2016). This results in the 
deposition of wall materials around the core material. The gelatin-gum acacia system is 
a widely studied and understood coating system (Poshadri & Aparna, 2010). However, 
there is a need to explore other potential gelatin/polymer systems to further enhance 
the potential use of encapsulation systems using gelatin. The Latin-chitosan system has 
been considered a potential combination of polymeric systems encapsulating bioactive 
compounds. Their combinations have been well-studied for many applications. For 
example, in a recent study by Wang et al. (2023), their combination was used to stabilize 
lutein as printable edible inks for food application. 

Gelatin is a protein containing many glycine, proline and 4-hydroxyproline residues 
(Fang & Bhandari, 2010). It can form complex coacervates with large amounts of anionic 
polymers for its excellent solubility, emulsifying activity, and gelling capability, making 
it the most commonly used protein for complex coacervation (Wang et al., 2018). Besides 
that, gelatin is cheap, readily available and possesses relatively low antigenicity compared 
to collagen. There are two types of commercialized gelatin: Type A gelatin and Type B 
gelatin, differentiated from its origin (Elzoghby, 2013).

Chitosan is a deacetylated chitin derivative and the second most widely used 
polysaccharide after cellulose (Vishwakarma et al., 2016). Polysaccharides have been of 
interest as encapsulating wall material since they can easily be abundant from many sources 
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(such as algal, microorganisms, plants, and animals) and are low-cost in processing (Yang 
et al., 2015). It is made up of β- (1→4) linked monosaccharide units of β-(1,4)-2- amino-
2-deoxy-D-glucose. The positive charge of Chi is attributed to the free amino groups that 
allow for reaction with negatively charged surfaces and anionic polymers (Pedro et al., 
2009). Parameters such as the degree of deacetylation (DD) and the molecular weight 
(MW) of Chi are very important as they could affect the functionality of the polymer 
(Pedro et al., 2009).

In order to design an optimized coacervation process, an understanding of the 
physicochemical factors involved in the coacervate formation is crucial. Although many 
kinds of literature have reported on the optimization of many polymeric systems to achieve 
a stable coacervate formation (e.g., Ghadermazi et al., 2019; Otálora et al., 2019; Timilsena 
et al., 2016), the different polymeric system exhibits distinct characteristics, thus, require 
different optimal parameters to induce coacervate formation. Though previous studies 
(e.g., Singh & Sheikh, 2022; Fan et al., 2023) have succeeded in encapsulating essential 
oils using gelatin and chitosan complexes, to our knowledge, no study has been reported 
on its application to encapsulate CHEO. Therefore, this study used gelatine type B (Gel-B) 
and chitosan (Chi) as wall materials to encapsulate CHEO through a complex coacervation 
technique. Since critical factors such as pH and mixing ratio have a great influence on 
the coacervate formation, the suitable condition was investigated through zeta potential, 
coacervate yield, and turbidity study. The combination of Gel-B and Chi as wall material 
should be able to improve the stability of CHEO as well as provide a controlled release 
to enhance its applications.

METHODOLOGY

Materials

Citrus Hystrix essential oil (CHEO) (pure essential oil) was purchased from BF1 (Malaysia). 
Gelatin-B (Gel-B) (type B, from bovine) was supplied from Halagel Sdn. Bhd. (Malaysia). 
Chitosan (Chi) (>80% deacetylation degree) was obtained from Nacalai Tesque (Japan). 
Oligomeric proanthocyanidins (OPCs), as a naturally occurring source of cross-linker, 
were derived from the outer shells of red grape seeds; also known as grape seed extracts 
(GSE-OPCs), contain approximately 98% of proanthocyanidin and was purchased from 
VitaHealth. Other chemicals used in this experiment were of analytical research grade. 
Sodium hydroxide (NaOH), Folin & Ciocalteu’s Phenol Reagent (FC), and phosphate 
buffer pH 7 were purchased from R&M Chemicals. As for glacial acetic acid (CH3COOH), 
sodium carbonate and ethanol (95%, denatured) were obtained from Friendemann Schmidt, 
Bendosen, and Systerm Chemicals, respectively. Deionized water (DI) was used throughout 
the experiment.
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Preparation of Stock Solutions

The preparation method of stock biopolymers was adapted from Aziz et al. (2016) with slight 
modifications. Both biopolymers were prepared at a concentration of 1% (w/v). An adequate 
amount of powdered Gel-B was first soaked in DI water for 30 minutes. The bloomed Gel-B 
solution was sealed and left stirring at 300 rpm with a temperature of 50℃ for 1 hour. Chi 
flakes were weighted and dissolved in 1% (v/v) CH3COOH to prepare Chi solution. The Chi 
mixture was left stirring (500 rpm) at room temperature for at least 6 hours. Both biopolymer 
solutions were sonicated for 6 minutes to eliminate the gas bubbles (Dima et al., 2016).

Zeta Potential of Individual Solution

Zeta potential values of the biopolymer solutions were determined using Zetasizer Nano 
Series (Malvern Instruments Ltd., Worcestershire, UK). Measurements were performed at pH 
values of 4, 4.4, 4.8, 5.0, 5.2, 5.4, 5.6, 5.8, and 6, as suggested by previous studies (Aziz et 
al., 2016; Prata & Grosso, 2015). The pH values were adjusted using an aqueous solution of 
NaOH (0.1 M) and CH3COOH (0.1 M). Dilution effects from pH adjustment were considered 
negligible. All measurements were performed in triplicate samples. Results were presented 
in millivolts (mV) units. A summary of the preparation process is illustrated in Figure 1.

Figure 1. Illustration of the zeta potential measurement process flow

Fourier Transform Infra-Red (FTIR)

In liquid form, FTIR spectra of Gel-B, Chi, and Gel-B/Chi coacervate (pH of 5.8) were 
obtained using a spectrophotometer FT-IR (Perkin Elmer Inc., Waltham, MA). FTIR spectra 
were recorded in transmittance (T) mode between 4000–515 cm-1 in the wavelength range. 

Preparation of Biopolymers Mixture 

Based on the zeta potential result, a mixture of biopolymers was prepared according to 
the determined ratio of 5:1 between Gel-B and Chi. The total biopolymer volume and 
concentration were fixed at 60 ml and 1% (w/v) to achieve optimum biopolymer ratios 

Gel-B
Chi NaOH 

(0.1 M)
CH3COOH

(0.1 M)

pH adjustment Zeta Potential AnalysisBiopolymers stick preparation



603Pertanika J. Sci. & Technol. 32 (2): 599 - 621 (2024)

Microencapsulation of CHEO by Gelatin B/Chitosan

(Gharanjig et al., 2020). The mixture was stirred for 20 mins at 300 rpm and a temperature 
of 50℃. Once a homogenized solution was obtained, 10 ml of the mixture was transferred 
into separate beakers. Then, the pH of the mixture was adjusted using an aqueous solution 
of NaOH (0.1 M) and CH3COOH (0.1 M) to obtain desired pH of 5.0, 5.2, 5.4, 5.6, 5.8 
and 6. To ensure the biopolymers ratio was maintained, a different sample of the mixture 
was used for each pH value. 

Dilution effects from pH adjustment were considered negligible. When the desired pH 
was obtained, the sample mixture was left stirring at 300 rpm and 50℃ for 15 minutes to 
ensure the homogeneity of the solution. The best operating pH was selected for maximum 
coacervate formation using coacervate yield and turbidity analysis. For turbidity analysis, 
turbidity measurement was taken on each sample using UV-Vis (Agilent Technologies Cary 
60 UV-Vis) at 600 nm (Kang et al., 2012). Distilled water was used as blank. Results were 
presented in absorbance value. The sample was centrifuged at 3000 rpm for 30 minutes to 
determine coacervate yield. The supernatant was decanted, and the sediment was left dried 
in an oven from 50℃ to 60℃ until the constant weight of the dry coacervate was achieved. 
A summary of the preparation process is illustrated in Figure 2. Coacervate yield (CY%) 
refers to the percentage of coacervate weight versus the total weight of biopolymers used 
to prepare the coacervate and was calculated as Equation 1: 

CY% = W c
W all

× 100%                                                               			   (1)

where Wc is the weight (g) of dry coacervate, and Wall is the weight (g) of the total 
biopolymers used to prepare the coacervate.

All measurements were performed in triplicate samples. FTIR, zeta potential analysis 
and visual evaluation were performed on each sample as described previously to better 
understand the coacervate formation.

Encapsulation of CHEO

The overall process of encapsulating CHEO was carried out using the adapted method 
from Aziz et al. (2016) and Rungwasantisuk and Raibhu (2020). Before encapsulation, a 
stock of biopolymers was prepared as previously described. The encapsulation procedure 
was divided into eight steps. All necessary information, including sample preparation, 
equipment settings, and operating parameters, were summarized in Figure 3.

Morphology Analysis of Encapsulates 

The morphology of encapsulates in the suspension was revealed using an optical microscope 
(RZ-5, Meiji Techno, Japan) alongside a digital camera and registered under Image Pro 
Plus 4.0 software. The microscopic images were taken at 40× magnification.
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Particle Size Analysis

Determination of the encapsulate size in the suspension and particle size distribution 
were conducted using laser light scattering (Mastersizer 2000, Malvern Instruments Ltd., 
Worcestershire, UK) at 1 min, 2500 rpm. An appropriate portion of the wet encapsulates 
was added dropwise to the instrument’s wet dispersing accessory. Triplicate samples were 
analyzed, and the mean volumetric diameter (D4,3) was reported.

GCMS

Gas Chromatography–Mass Spectrometry (GCMS) analysis was conducted to identify the 
phenolic compounds and terpenoids present in the CHEO. The analysis was performed using 
an Agilent 7890 gas chromatograph model coupled to an Agilent 5975 quadrupole mass 
detector (Agilent Technologies, Santa Clara, CA, USA). The operating method was adopted 
by Ashaari et al. (2021). One microliter of CHEO was injected into the GC injection port 
with a 1:50 split mode and separated on an HP-5MS capillary column (30 m × 250 µm inner 
diameter × 0.25 µm film thickness). Helium was used as carrier gas with a flow rate set at 
1 mL/min. The operation temperature was programmed at a rate of 10°C/min to increase 
the temperature gradually from 50°C to 280°C in 3 minutes. The electron-impact (EI) mode 
was used while operating the spectrometer with 70 eV ionization energy. The inlet/transfer 
line and ionization source temperatures were set at 280°C and 220°C, respectively. The 
volatile components of CHEO were identified through mass spectra comparison using MSD 
Chemstation Enhanced Data Analysis Software (E.02.02.1431 version, Agilent Technologies) 
and the National Institute of Standards and Technology library database (NIST 20).

TPC Quantification

Total Phenolic Content (TPC) quantification of CHEO was carried out using the Folin-
Ciocalteu method as described by Shetta et al. (2019) and Do et al. (2014) with slight 
modifications. 1 ml of CHEO (0.9203 g/ml) was added into 9 mL of ethanol and diluted 
10x with DI water. Then, 1 mL of previously diluted CHEO mixture was mixed with 2.5 
ml of freshly prepared FC reagent diluted in water (10% v/v). The solution was left for 3 
minutes incubation at room temperature and in dark conditions. Then, 2.0 ml of Na2CO3 

(7.5% w/v) was added to the solution and mixed again. After 30 minutes of reaction time 
at ambient temperature (25◦C) and in dark conditions, the absorbance of the sample was 
measured at 765 nm wavelength against blank using UV-Vis (Agilent Technologies Cary 
60 UV-Vis). TPC of CHEO was determined as Gallic Acid Equivalents (GAE) by entering 
the absorbance value of CHEO extracted to the equation of the Gallic Acid standard curve 
that was initially prepared (y=0.12523x + 0.03961; R2=0.99870). The result was used as a 
control to calculate the amount of CHEO for encapsulation efficiency. All measurements 
were performed in triplicate samples.
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Determination of Encapsulation Efficiency

This study determined the amount of unencapsulated CHEO by analyzing the excess 
CHEO available in the suspension after the encapsulation process. 5 ml of accurately 
measured homogenized encapsulated suspension was placed in a 15 ml tube. Then, 30 
mL of ethanol was added into the tube to extract unencapsulated oil. The solution was 
then mixed up using a vortex mixture for 5 minutes at 1500 rpm (Fraj et al., 2021; Yu et 
al., 2017) to enhance the extraction of unencapsulated oil. After extraction, the dispersion 
was filtered using a Whatman #41 paper filter (Shi et al., 2018). The free (unencapsulated) 
oil filtrate was collected and evaluated for spectrophotometric quantification of total 
phenolic compounds using UV-Vis (Agilent Technologies Cary 60 UV-Vis) at 765 nm 
wavelength. All measurements were performed in triplicate samples. The encapsulation 
process efficiency (EE%) was calculated as Equation 2 (Girardi et al., 2017):

EE% = W O−W S
W O

× 100%                                              			   (2)

where EE% is the weight percentage of encapsulated CHEO in a certain amount of 
encapsulated suspension, WS is the weight (g) of unencapsulated CHEO in a certain amount 
of encapsulated suspension, and WO is the weight (g) of the CHEO used to prepare the 
same amount of encapsulates suspension.

Statistical Analysis

All experiments were carried out at least three times under the same conditions. Results 
were presented as average with standard deviation values. Statistical analysis was performed 
using Microsoft Excel and IBM SPSS software. Determination of the statistical difference 
between groups and probability value of p<0.05 was specified with a one-way analysis of 
variance (ANOVA) using Post hoc Tukey’s test.

RESULTS AND DISCUSSION

Analysis of Individual Biopolymer

Recently, determining the zeta potential of individual polymers has become an interest 
since it could help to reduce the number of assays needed to determine the pH range where 
interaction between polyelectrolytes possible to occur (e.g., Espinosa-Andrews et al., 2013; 
Gharanjig et al., 2020). Protein and polysaccharides usually carry a functional group that 
gives them either a positive or negative charge depending on the introduced pH. 

Figure 4 presents the zeta potential of individual Gel-B and Chi at different pHs 
from 4.0 to 6.0. As can be observed from the Figure 4, all zeta potential values over the 
pH range tested for Chi are positive. It indicates that Chi is positively charged and could 
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function as a polycation in the pH range 
between 4.0 and 6.0. Chi naturally exhibits 
cationic properties in an acidic environment 
due to the protonation of amino groups, 
thus making it soluble in water (Aziz et 
al., 2016; Cheung et al., 2015). However, 
the zeta potential values are decreasing 
as the pH approaches 6.0. According 
to Espinosa-Andrews et al. (2013), this 
decreasing behavior occurred due to the loss 
of charge of the glucosamine segments and 
the reduction of any electrostatic screening 
effects. For Chi to become soluble in an 
aqueous form, the pH of the solution must 

Figure 4. Zeta potential value for Gel (B) and 
Chitosan

120

100

80

60

40

20

0

-20

Ze
ta

 P
ot

en
tia

l (
m

V)

 4.0      4.4      4.8      5.2      5.6      6.0 
pH

Gel-B
Chi

be less than its pKa (6.5) (Prata & Grosso, 2015), or otherwise, it will become insoluble, 
precipitates (Sogias et al., 2010) and manifests in the formation of a cloudy solution. 
Preliminary studies in this experiment have shown that at pH 6, the solution turns cloudy, 
and therefore, considering the solubility of Chi, the pH selected is limited to only 6 
(Gonçalves et al., 2018).

On the other hand, the zeta potential values for Gel-B show positive values between 
pH 4 and 5 and negative values from pH 5.2 up to 6.0. Similar to the findings by Lv et 
al. (2012), in which Gel-B exhibits amphoteric characteristics. Typically, Gel-B is an 
anionic protein with an isoelectric point (pI) between pH 4.8–5 (Elzoghby, 2013). From 
the analysis of the result, we found that the pI of Gel-B was approximately at pH 5.1. At 
this pH, Gel-B exhibits a zero-charge density from shielding the carboxylic moieties by 
excess H+ counterions (Espinosa-Andrews et al., 2013). In designing operating conditions 
for complex coacervation, it is important for protein and polysaccharide to have opposite 
charges to induce coacervate formation from the electrostatic interactions through 
carboxylate groups located on Gel-B and protonated amine/amide of Chi. Above the pI 
value, Gel-B will behave as an anionic protein through dissociation of the carboxylic 
groups (–COOH⟶–COO− +H+) and, hence, able to neutralize the protonated amine 
groups of cationic polysaccharides (Chi). Thus, in this study, pH 5.0, 5.2, 5.4, 5.6 and 6.0 
were selected for further study.

Determination of the Best pH and Wall Ratio for Complex Coacervates Formation

Optimizing a coacervate formation is a complex process as critical parameters such as 
pH and mixing ratio need to be individually optimized as they are interdependent (Yan & 
Zhang, 2014). The mixing ratio is an important factor for optimum coacervate formation as 
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it indicates the charge balance between the protein and polysaccharide involved (Kaushik 
et al., 2015) and determines the intensity of interaction and complexation (Eghbal & 
Choudhary, 2018). Timilsena et al. (2016) reported that an optimum coacervation was 
achieved at a mixing ratio of chia seed protein isolate (CPI) to chia seed gum (CSG) of 6:1 
at an identified optimum pH of 2.7. Further increase of CPI in the mixing ratio at the same 
pH results in decreased coacervate yield. Increasing the ratio from its optimum proportion 
will cause one component to become deficient and another in excess (Timilsena et al., 2019). 
The excess polymer will not be able to react with soluble form in the equilibrium phase. 
Meanwhile, in a study by Gharanjig et al. (2020), the authors found that a decreasing pattern 
of pH optimum was observed as they increased the ratio of gum to gelatin. It indicates 
that pH influences coacervate formation, and a specific optimized mixing ratio at different 
pH exists. An optimum mixing ratio occurs when both polyelectrolytes are in equivalent 
amounts in which none of the polyelectrolytes are in excess. Therefore, zeta’s potential 
evaluation should exhibit a charge of zero or almost near zero (Emamverdian et al., 2020).    

The data from zeta potential values of individual polymers can be used to develop 
a mixing ratio between Gel-B and Chi (Prata & Grosso, 2015). Theoretically, if an 
anionic protein has a -5mV charge and a cationic polysaccharide carries a 25mV charge 
at pH titration of 5. Thus, it would be necessary to increase the use of protein 5 times to 
neutralize the positive charge of polysaccharides, whereas the mixing ratio for protein to 
polysaccharides would be 5:1. 

Table 1 presents five possible mixing ratios of Gel-B:Chi; 24:1, 7:1, 36:1, 9:1, 8:1 and 
5:1 that were developed by taking into account charge on both biopolymers. However, 
considering economic interest, only a mixing ratio of 5:1 was used for further analysis 
since this combination ratio used the least amount of biopolymers as the raw materials.

Table 1
Developing wall ratio from Gel (B) and Chi charge

pH Gel Chi Multiplier Round off Gel:Chi
4 14.67i ± 0.06 94.15g ± 0.49 - - - -

4.4 12.27h ± 0.23 101.67h ± 2.08 - - - -
4.8 8.03g ± 0.10 86.80f ± 1.06 - - - -
5 4.10f ± 0.04 90.87g ± 1.10 - - - -

5.2 -3.23d ± 0.03 76.03e ± 0.78 -23.56 ~24 24 1
5.4 -1.83e ± 0.01 66.17d ± 1.33 -36.16 ~36 36 1
5.6 -6.94c ± 0.07 61.83c ± 0.86 -8.91 ~9 9 1
5.8 -7.45b ± 0.27 58.00b ± 0.56 -7.78 ~8 8 1
6 -9.18a ± 0.11 49.60a ± 1.08 -5.41 ~5 5 1

Note. The superscript alphabet denotes the statistically significant difference between groups (p<0.05) for each 
column. The level of significance is determined by alphabetical order. Groups with the same alphabet indicate 
no statistical difference between groups.
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The interaction between two biopolymers can become evident in several ways: (1) 
small soluble complexes (SC) are formed by manifesting themselves in murky solutions, 
and (2) depending on interaction; if the interaction is weak, a homogeneous weak gel 
is formed, but if the interaction is strong, precipitation of both biopolymers will occur 
(Espinosa-Andrews et al., 2013). Many literatures (e.g., Kaushik et al., 2015; Lv et al., 
2013; Shinde & Nagarsenker, 2009) have reported on different evaluation methods used to 
validate the formation of this precipitate or coacervate. Common methods include turbidity/
visual appearance, coacervate yield, and zeta potential analysis. Turbidity is related to the 
concentration of the polyelectrolyte solutions and their molecular weight (Meka et al., 
2017). The coacervate formation will reduce the transparency of the biopolymer mixture, 
causing a higher absorbance value (Kang et al., 2012). Meanwhile, the use of zeta potential 
or electrophoretic mobility to predict the extent of coacervate formation has been explained 
by Burgess and Carless (1984).

Sometimes, observing more than one method to validate each parameter is compulsory. 
For instance, one should consider the relationship between the absorbance increase and 
insolubility in justifying turbidity measurement alone. In some cases, like a study by Prata 
and Grosso (2015), they found that the turbidity of a system with a pH greater than 6.5 
represents the insolubility of the Chi rather than the formation of complexes owing to a 
large number of reactive groups in Chi. Though significant electrostatic interaction that 
initiates complex coacervation is induced from the large charges on the polyelectrolytes, 
charges that are too large will cause precipitation (Aziz et al., 2016).

The coacervate yield and absorbance value of coacervate formation over a range 
of pH tests are presented in Figure 5. As can be seen from the Figure 5, both dependent 
variables showed a similar pattern, validating each other responses towards pH variables 
that were being tested in the experiment. As demonstrated by one-way ANOVA, a 
statistically significant difference was observed in both dependent variables: coacervate yield 
(F(5,12)=61.229, p=0.001) and absorbance (F(5,12)=91.865, p=0.001) illustrating legitimate 
pH effects towards both dependent variables tested. However, in both dependent variables, 
a statistically significant difference was more prominent at lower pH ranges as compared 
to higher pH ranges. This statistical evidence also implied the need to observe at least two 
validating parameters, as mentioned before, since the coacervate yield and absorbance value 
were unlikely to be statistically significant toward pH values at higher pH tests.

In particular, the coacervate yield and absorbance values were highest at pH 5.8 
compared to other pH ranges, indicating the highest coacervate formation occurred at this 
pH. Therefore, this pH should be maintained to achieve an optimum coacervate formation 
for a mixing ratio 5:1 between Gel-B/Chi. A quite similar finding was also reported by 
Kang et al. (2012) when encapsulating using a combination of Gel-B and Chi. Though 
the study indicated that the best mixing ratio and pH for Gel-B and Chi are 15:1 (w:w) 
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Figure 5. Absorbance value for Gel (B)-Chi (5:1) mixture (Alphabet is used to denote the statistically significant 
difference between groups (p<0.05). Given coacervate yied: pH 5.0a, 5.2b, 5.4c, 5.6c, 5.8c, 6.0c; absorbance: pH 
5.0a, 5.2b, 5.4c, 5.6cd, 5.8d, 6.0d. Level of significant is determined by alphabetical order. Groups with the same 
alphabet indicates no statistical difference between groups)
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and 6.0, respectively, the actual ratio between glucosamine residue of Chi and acidic 
amino acid residue of Gel-B was calculated to be roughly 1:5. Another study reported by 
Espinosa-Andrews et al., (2013) has shown that a shift towards a higher optimum pH (>5) 
was observed when a smaller ratio between Gum Arabic and Chi was used;[5.5:1], [3:1], 
[1:1], meaning when Chi as polycation was in excess, optimum pH is more likely to be 
achieved at higher pH value. 

It also explained the unlikely statistically significant difference of coacervate formation 
observed in our study at higher pH values tested. A good justification for this observation is 
that when the basicity of the system increases, the absolute charge density of Chi decreases 
but remains in the positive region. At the same time, the zeta potential of Gel-B achieves a 
maximum degree of ionization, as seen in Figure 4. Therefore, the zeta potentials of Chi and 
Gel-B become almost equivalent, rendering a complex with almost no/near to zero residue 
charge. A zero or near-to-zero residue charge of the complex would reduce electrostatic 
repulsions between particles and colloidal stability of the system, causing precipitates and, 
hence, resulting in maximum turbidity and coacervate yield. 

Meanwhile, Figure 6 shows the behavior of charge density and the visual appearance 
of the coacervate. Two significant pieces of information should be observed. First, all 
coacervates exhibit a positive charge density value regardless of pH. The inference derived 
was an excess of Chi (Prata & Grosso, 2015) as polycations in the system. As observed 
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Figure 6. Visual evaluation and zeta potential of Gel (B)-Chi mixture
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in Figure 4, Chi exhibits a larger absolute charge density than Gel-B; thus, more Gel-B is 
needed to neutralize the positive charge of Chi. However, this mixing ratio might not be 
the ideal for Gel-B and Chi used in this study. Second, the charge density of coacervate 
showed a decreasing pattern when the pH was increased. As discussed previously, this 
observation agrees with the absorbance and coacervate yield result. More coacervate was 
formed when the pH was increased, but at pH 6.0, the reduction observed was contributed 
by the influence of the alkali addition, which tends to neutralize the negatively charged 
group of the Chi (Prata & Grosso, 2015). In a study by Silva and Andrade (2009), the 
author also found a significant reduction in turbidity for all combinations of Gel-B and 
Chi systems studied at pH 6.0.

As evidence, analysis of individual polymers showed the carboxylate groups located on 
proteins and protonated amine/amide of the polysaccharides (Gharanjig et al., 2020). The 
negative charge of proteins is associated with the presence of carboxylate groups. Figure 7 
shows the FTIR spectrums related to Gel-B, Chi, and their complex coacervate analyzed at 
pH 5.8. As shown in Figure 7, the three spectrums showed an overall similar pattern with 
two significant peaks. A wide, strong peak was observed at wavelength 3308.61 cm-1 and 
3337.03 cm-1 for Gel-B and Chi, respectively. These peaks correspond to normal polymeric 
O-H stretching vibrations and N-H stretching of amines and amides. Characteristic peaks of 
Chi were due to the stretching and bending from O-H groups of the pyranose ring and the 
stretching vibration of N-H functional groups of the primary amine in Chi’s backbone (Roy 
et al., 2018). Meanwhile, short, weak peaks at 1635.24 cm-1 for Gel-B and 1636.13 cm-1 for 
Chi result from the N-H bending of amines and the C-O stretching of amides. 

The formation of coacervates between Gel-B and Chi was evidenced by a slight change 
in the coacervate spectrum, suggesting that the functional groups of coacervate underwent 
substantial alteration. A shift towards a lower wavelength range was due to the formation 
of hydrogen bonds between Chi and Gel-B molecules. Notably, the resultant coacervate 
spectrum exhibits slightly lower absorption strength at around 3207.91 cm-1 compared 
to native biopolymers alone due to interaction between the C=O group of Gel-B and the 
N-H groups of Chi. As stated before, the formation of complex coacervate between Gel-B 
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and Chi was driven by the electrostatic interactions through carboxylate groups located on 
Gel-B and protonated amine/amide of Chi. 

Characterization of CHEO

Analysis of the TPC in the CHEO used in this study confirmed the presence of CHEO 
contains almost 2.01 ± 0.02 mg of GAE/g of oil. The TPC value obtained was expected to 
be lowered compared to findings from Wijaya et al. (2017) and Houng et al. (2023) since 
CHEO used in this study was simply purchased from available commercialized CHEO. 
Some susceptible phenolic compounds might have been lost throughout the extraction and 
manufacturing processes. Deterioration of the compounds or volatile loss is likely to occur 
owing to the high temperature and long duration of the extraction procedures (Phong et 
al., 2022). Besides, different amounts and variation types of active constituents found in 
CHEO are due to various factors such as the method of extraction (Wijaya et al., 2017) 
and agroclimatic influences such as seasonal, geographical, or climatical of the location 
where CHEO was obtained (Ahmed et al., 2019). 

From the analysis of GCMS data, 102 chemical compounds were identified in 
CHEO and used in this experiment. Such compounds would include Isopropyl myristate 
(41.3399%), Isopropyl palmitate (26.5571%), D-Limonene (4.6678%), Polypropylene 
glycol (4.2105%), Solvanol (3.4694%), Hexylcinnamaldehyde (2.6428%), d-Camphor 
(2.5863%), Palmitic acid (2.3143%), Myristic acid (1.8121%), Dipropylene glycol 
(1.4956%) and other compounds that make up less than 1% of the total composition of 
CHEO (Table 2). 

Figure 7. FTIR spectrums related to Gel-B, Chi and their complex coacervate at pH 5.8
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Based on the result, it can be concluded 
that some of the major compounds typically 
presented in CHEO (Lubinska-Szczygeł 
et al., 2018; Othman et al., 2016)  that 
belong to the terpenes were detected such 
as D-Limonene, linalool, α-Terpinol, 
L-β-Pinene, L-4-terpineol, d-α-Pinene, 
Terpinolene, Citronellol, β-mircene, 
Camphene, Citronellyl palmitoleate, 
α-Sabinene, β-Copaene and citronellal. 
The bio functionalities of CHEO as an 
antimicrobial and antioxidant are mainly 
contributed by the synergistic effects 

Table 2
List of chemical constituents present in CHEO

RT Compound %
15.9973 Isopropyl myristate 41.3399
17.9849 Isopropyl palmitate 26.5571
5.7856 D-Limonene 4.6678
6.6560 Polypropylene glycol 4.2105
13.6688 Solvanol 3.4694
15.3067 Hexylcinnamaldehyde 2.6428
7.5516 d-Camphor 2.5863
18.0257 Palmitic acid 2.3143
16.1052 Myristic acid 1.8121
5.9371 Dipropylene glycol 1.4956

between these active constituents present in CHEO (Qin et al., 2018). Ensuring these active 
constituents are successfully entrapped should be a primary concern when encapsulating 
CHEO.

Encapsulation Efficiency

One of the important parameters to evaluate the performance of an encapsulation process 
is calculating the encapsulation efficiency (EE) value. Encapsulation efficiency (EE) is 
the percentage of essential oil successfully entrapped within the wall material over the 
essential oil introduced at the beginning of the process (De Matos et al., 2018). Previous 
studies (e.g., Hussein et al., 2016; Rosli et al., 2018) have shown that Total Phenolic 
Content (TPC) can be used to calculate EE for essential oil encapsulation. This experiment 
achieved a high EE value at almost 94.81% ± 2.60. This result is expected as, according 
to Timilsena et al. (2019), complex coacervation provides a high EE value of up to almost 
99%. Other studies by Manaf et al. (2018) and Mousavi et al. (2021) also reported high EE 
values at around 94% and 87% when using Gel-B and Chi as their capping material. A high 
percentage of encapsulation efficiency indicates that less CHEO is present on the surface 
of encapsulates or not encapsulated in the process. It also implies that the encapsulation 
process was conducted successfully, and that Gel-B and Chi can be used as the perfect 
combination of wall materials to encapsulate CHEO. 

Physical Properties of Encapsulates

Generally, the types and structure of encapsulates produced are influenced by the 
wall materials used and the encapsulation condition and method (Bakry et al., 2016). 

Different characteristics in terms of morphology and size of encapsulates can be 
obtained by manipulating chemical, physical, and condition parameters throughout the 
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encapsulation process (Aziz et al., 2015; 
Aziz et al., 2014). Figure 8 shows the image 
of encapsulates under observation using an 
optical microscope at 40× magnification. 
It can be seen from the Figure 8 that the 
encapsulates produced were spherical, 
mononucleated, and a single core with a 
definite wall (Fang & Bhandari, 2010), as 
indicated in the red circles. This finding 
was also in line with encapsulates produced 
in a study by Oliveira et al. (2019), who 
observed encapsulates with mononuclear 
structures when encapsulating pequin oil 

Figure 8. Optical microscopic image of wet 
encapsulates prior encapsulation process taken at 
40× magnification (Red circles indicate individual wet 
encapsulates produced in the suspension)

with gelatin and gum Arabic using complex coacervation. However, this result was in 
contrast with the findings from Raksa et al. (2017). 

In the study, the authors observed encapsulates with spherical and matrix-type structures 
in which loading of CHEO presented as small spherical particles inside the encapsulate. 
The formation of a matrix type or multicore encapsulates is caused by the aggregation of 
many single-core encapsulates and could be seen in encapsulation using the coacervation 
process (Dong et al., 2007; Wang et al., 2014). Meanwhile, in the encapsulation process, 
which involves thermal treatment such as spray drying, the formation of a multicore 
structure might be caused by the outward movement of a small amount of volatilized EOs 
that are later embedded inside the crust wall (Adamiec et al., 2012) or stays on the surface 
(Ngamekaue & Chitprasert, 2019). As found in our study, the formation of mononucleated 
structure encapsulates could be due to the homogenization step involved during the 
emulsification process. 

Lemetter et al. (2009) investigated the effect of shear rate on the formation of 
encapsulates and discovered that as the rotation speed increased, more mononucleated 
encapsulates were detected. It is also interesting to note that most encapsulates in this study 
were well dispersed as individuals in the suspension with less agglomeration as compared 
to encapsulates produced by Aziz et al. (2016). The author obtained the final products of 
encapsulates clustered together, forming agglomerates, and justified that excess Gel-B or 
the wall materials that underwent phase changes from liquid to solid were likely to go 
through a sticky stage, making it difficult to avoid agglomeration. Meanwhile, Prata and 
Grosso (2015) inferred that unencapsulated oil on the encapsulated surface would, over 
time, promote encapsulates to attach and form agglomerates. 

However, less agglomeration observed in our study could be due to less polymer 
concentration used in the coacervation process than Aziz et al. (2016). While Burgess and 
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Carless (1985) justified the reduction in coacervate formation was due to the increment in the 
polymer concentration, Oliveira et al. (2019) used this justification to explain the formation 
of agglomeration when investigating the effect of concentration on the morphology of 
encapsulates produced. It is inferred that as the concentration of polymers increases, the 
neighboring molecules are induced to neutralize each other through coulombic attraction, 
forming a large, stable gel-type network fortified by hydrogen bonding.

The size distribution of encapsulates is shown in Figure 9. As can be seen, a monomodal 
distribution was observed in which the largest particle size, d (0.9) of 194.557 µm, was 
dominating. The encapsulates were also characterized by a mean size diameter d (4,3) 
of 108.395 µm. The size range is within an acceptable range of microparticles produced 

CONCLUSION

In the present study, CHEO encapsulates were successfully produced and characterized 
through complex coacervation. Gel-B and Chi were excellent wall materials to encapsulate 
CHEO at 5:1 and pH 5.8 mixing ratios. FTIR analysis confirmed the formation of 
coacervates between Gel-B and Chi. These operating conditions obtained a high EE value at 
almost 94.81% ± 2.60. Characterization of CHEO used in this study revealed the presence 
of phenolic compounds at 2.01 ± 0.02 mg of GAE/g of oil. From GCMS data analysis, 
major compounds presented in the CHEO belong to the terpenes group. The encapsulates 
produced were spherical with a mononucleated structure and had a particle size within the 
microcapsule range between 23.270 um and 194.557 um. 
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Figure 9. Size distribution of wet encapsulates 

from the complex coacervation process, 
which is between 0.1–500 µm (Comunian 
& Favaro-Trindade, 2016), suggesting that 
the encapsulation technique employed 
in this study successfully produced 
microencapsulates. The width of distribution 
(span) was considered small (2.398) 
owing to the mononucleated structure 
and homogenization process preventing 
multicore encapsulation formation through 
aggregation.
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